
M0fm 

PAPER P-1080 

14170399 

A GENERALIZED STOCHASTIC 
LANCHESTER ATTRITION PROCESS 

Alan F. Karr 

September 1975 

INSTITUTE FOR DEFENSE ANALYSES 
PROGRAM ANALYSIS DIVISION 

IDA Log  No.  HQ 74-16780 
Copy        63  of 125 copies 



The work reported In the publication was conducted under IDA's 
Independent Research  Program.   Its publication does not imply 
endorsement by the Department of Defense or any other govern- 
ment agency,   nor should the contents be construed as reflecting 
the official position of any government agency. 



UNCLASSIFIED 
SECURITY CLASSIFICATION QW TMIS RAGE fWhmm D„, ft|>HI<| 

REPORT DOCUMENTATION PACE 
I    RERORY NUMHR  

P-1080 
I.  OOVT   ACCESSION MO 

«.    TITLE (m*ä iubiitlm) 

A Generalized Stochastic Lanchester 
Attrition Process 

7      AUTMORf», 

Alan F.   Karr 

■     PERFORMING ORGANIZATION  NAME   AND  ADDRESS 

Institute for Defense Analyses 
400 Army-Navy Drive 
Arlington. Virginia 22202  
H.    CONTROLLING OFFl« NAME  «NO AOORESS 

Tl     MONITORING AOEMCV NAME *   «OOMII^il d,ll**ont Irom Compiling OHtrt) 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1     RECIPIENT'S CATALOG NUMIIR 

S     Tvf| QW REPORT ft »MiOO COVEREO 

•    PERFORMING OAG   REPORT NUMBER 

•     CONTRACT OR GRANT NUMBERED 

IDA Independent 
Research Program 

«3     PROGRAM ELEMENT PROJECT    TASK 
ARE* * WORK UNIT NUMBERS 

If,    REPORT OATf 

July  1975 
«I     NUMBER OF PAGES 

24 
H      »ECURITV  CLASS    <ol thf t.,;t< 

Unclassified 

1»a     OECLASSIFICATION   DORNGRAOiNG 
SCHEDULE 

I*      DISTRIBUTION  STATEMENT fol thlt H,pof 

This document Is unclassified and suitable for public 
release. 

DISTRIBUTION STATEMENT (of tho omairmci HMBRMJ '" »»or* 20,   II BMBMM from  ßoßon) 

It.    SUPPLEMENTARY NOTES 

It     KCV WORDS (Continue on r«v«r** •<*• ll notomamry m* Honllhr *T *»«c* numh**> 

stochastic attrition process, Lanchester attrition process, 
Lanchester square combat, combat simulation model 

JO     ABSTRACT (Cmnttnum on NMNI •'«*» " *oc»9»*V m* l4onuly Ar »*•€* numtot) 

A mixed-mode, heterogeneous, stochastic Lanchester 
attrition process Is described, which is based on a four- 
category classification of weapons.  Comments are made 
concerning the distinction between square-law and linear-law 
combat.  Potential applicability of the model in combat 
simulations is also discussed. 

DD    , jJS^l   1473 ROITIOM OE   I NOV §• It OBtOLfTE UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS RAGE <**•* P* 



SECURITY CLASSIFICATION QW THIS PAOCfMfr-i Dmim Knffd) 

SECURITY CLASSIFICATION Of THIS PkG€(Wh»n D»f Erttmrmd) 



PAPER P-1080 

A GENERALIZED STOCHASTIC 
LANCHESTER ATTRITION PROCESS 

Alan F. Karr 

September 1975 

IDA 
INSTITUTE FOR DEFENSE ANALYSES 

PROGRAM ANALYSIS DIVISION 
400 Army-Navy Drive, Arlington, Virginia 22202 

IDA   Independent  Research   Program 





CONTENTS 

PREFACE  iv 

I.  SQUARE-LAW and LINEAR-LAW COMBAT:  THE DISTINCTION. . 1 

II.  THE MATHEMATICAL MODEL    6 

III.  POTENTIAL APPLICATIONS    16 

REFERENCES  21 

TABLE 

1.  Engagement Rates for Lanchester Processes      3 

ill 



PREFACE 

In this paper we present a stochastic Lanchester-type 

mathematical model of the attrition suffered in a combat 

between two heterogeneous forces.   The model is based on a 

four-category classification of weapons originally noted in 

Reference [5, pp. 5-6, p. 17] and includes as special cases 

all the attrition models treated there.  We also give comments 

concerning the possible application of the model in computerized 

combat simulations such as IDAGAM I (Reference [1]). 

The author is indebted to Drs. Lowell Bruce Anderson, 

Jerome Bracken, and Jerry Blankenship of IDA for many helpful 

discussions during the preparation of this paper.  Their sug- 

gestions have contributed substantially to its content. 

iv 



Chapter I 

SQUARE-LAW AND LINEAR-LAW COMBAT:  THE DISTINCTION 

The analysis leading to the generalized stochastic 

Lanchester attrition process described below is relevant to 

the previously rather obscure distinction between Lanchester 

square-law and Lanchester linear-law combat, to which we now 

address ourselves.  Lanchester (Reference [6]) himself sought 

to distinguish the two by whether the numerically superior 

side is able to make full use of its superiority (square law) 

or not (linear law).  This is one interpretation of the dis- 

tinction as we have come to understand it, at least in the 

case of homogeneous forces.  For heterogeneous forces, how- 

ever, the problem is considerably more subtle; we feel that 

the explanation to be presented below is the most cogent yet 

constructed. 

The first distinction among weapons is based on the 

qualitative nature of the rates of engagement initiation 

(i.e., rates at which shots are fired).  A particular type 

of weapon is said to have square-law  engagement   initiation 

if the mean total rate at which it engages (i.e., fires upon) 

opposition weapons is independent of the numerical size of 

the opposition force (as well as of its precise structure). 

In other words, the mean engagement rate depends only on 

the type of weapon.  Physical assumptions compatible with 

this behavior are discussed in Reference [5, pp. 29-^0]. 

The possibility that the rates at which particular types of 

opposition weapons are engaged may depend on the numbers of 



various kinds of opposition weapons that are present is not 

inconsistent with our earlier statement, which concerned only 

the mean total rate of engagement. 

On the other hand, a type of weapon is said to possess 

linear-law  engagement  initiation  if the mean total rate at which 

it engages elements of a target force y = (y , ..., y )— 

assuming that the opposition has n different types of weapons— 
n 

is of the form \    a y., where the a, are nonnegative con- 

stants.  A word of warning is in order here concerning our 

usage of the term "mean rate." We intend that it be inter- 

preted in the sense of the infinitesimal generator of a 

continuous time Markov process (i.e., the instantaneous rate 

at which the event in question tends to occur, given the 

current state of the process).  We refer the reader to 

Reference [5] for further details.  A physical interpreta- 

tion of linear-law engagement initiation can be found in 

Reference [5, pp. 41-48, 101-122].  In particular, the rate 

at which opposition weapons of any given type are engaged 

is directly proportional to the number of weapons of that 

type currently surviving. 

It is also true, however, that for square-law engagement 

the rate of engagement of a  particular   type   j of opposition 

weapon is proportional to the number of weapons of that type 

present.  But in this case the constant of proportionality 

is of the form B/y*, where y* is the total number of opposition 

weapons present, whereas in the linear-law case the proportion- 

ality factor is simply a constant a..  Note that 3 is independent 

of the type j of the target weapon, although both $ and the a., 

of course, depend on the type of the engaging weapon.  Table 1 

clarifies this rather important distinction:  y1 is the number 

of opposition type-j weapons present; y* is the total number of 

opposition weapons present. 



Table 1.  ENGAGEMENT RATES FOR LANCHESTER PROCESSES 

Engagement Initiation Type-j Weapons All Opposition Weapons 

Linear-Law a .y . 
n 
I     a.y. 

j-1  J J 

Square-Law ey4 y* 
B 

From this analysis, the first—and possibly most important- 

conclusion to be drawn is that the square-law/linear-law dis- 

tinction applies   not   to   the  combat  as  a  whole  but   to   individual 

types  of weapons.     In other words, while a particular type of 

weapon may be said to have square- or linear-law engagement 

initiation, the combat itself cannot be said to possess either 

property.  Even if all weapons present belong to one of the 

two classes (in this case, one would have essentially Process 

S3 or Process L3—see Reference [5]), it is still inaccurate 

to say that the combat itself is of that type.  The distinction 

simply is not of that nature; it applies only to individual 

types of weapons. 

It then becomes quite important to determine whether a 

particular type of weapon possesses square- or linear-law 

engagement initiation.  We believe that Lanchester's original 

differentiation is fairly close to the truth.  A weapon type 

has square-law engagement initiation if all weapons of that 

type are able simultaneously to bring their fire to bear on 

the opposition.  Two ways in which this simultaneity can be 

envisioned are that (1) shots are fired, at a rate determined 

only by the shooting weapon, at an area in which the opposition 

is known (or thought) to be located; or (2) weapons are mobile 

and push forward in such a way as to maintain a rate of contacts 

with enemy weapons that is independent of the number of enemy 



weapons present.  In Reference [5], the former interpretation 

is adopted; the latter is due to L. B. Anderson. 

On the other hand, linear-law engagement initiation arises 

when weapons of the type under consideration must engage opposi- 

tion weapons essentially on a one-on-one basis.  Probably the 

easiest way to envision this form of engagement is that of 

Reference [5]:  each given opposition weapon requires an ex- 

ponentially distributed random time to detect, different 

opposition weapons are detected independently, and an engage- 

ment occurs if and only if an opposition weapon is detected. 

(See Process L3 in Reference [5, pp. 47-48, 115-122] for 

details and further interpretations; Processes LI and L2 of 

Reference [5] are also relevant.) 

The problem of deciding whether a particular type of 

weapon has square- or linear-law engagement initiation seems 

to us, in terms of attrition modeling, crucial and difficult. 

The implications in terms of computed levels of attrition and 

FEBA movement are likely to be substantial—as is confirmed 

by experiments with simplified homogeneous models (essentially 

discretized versions of Lanchester's original differential 

equations).  Hence this classification should not be under- 

taken lightly or carelessly, as it may have overwhelming 

effects on the outputs of combat simulation models.  For 

certain types of weapons—e.g., artillery (square law) or 

small arms (linear law)—the choice seems fairly clear.  But 

for some other types (e.g., tanks), the choice is not at all 

clear.  For example, it appears that to which category a tank 

belongs may be the result of tactical decisions by the two 

sides, may change during the course of a battle, and is more 

properly an output of the attrition model than a prescribed 

input.  We cannot refute these criticisms except by noting 

that no attrition model yet devised correctly addresses any 



of the difficulties raised.  The possibility that engagement 

initiation is in its qualitative nature the result of tactical 

decisions is particularly interesting, however; the weaker 

side would seek to create linear-law engagement initiation, 

and the stronger side would desire square-law initiation. 

We hope that these remarks have clarified the square-law/ 

linear-law distinction and that they will serve as a stimulus 

to further research in this important area. 



Chapter II 

THE MATHEMATICAL MODEL 

A unique characteristic of the generalized Lanchester 

attrition model presented here is a qualitative classifica- 

tion of weapons into four categories, based on two distinc- 

tions.  The first of these characterizes weapons as to the 

qualitative nature of the rate at which they initiate engage- 

ments, and has been discussed at length above. 

The second classification characterizes weapons as single^ 

kill  or multiple-kill,   depending on whether one shot can kill 

either at most one or possibly more than one opposition weapon. 

An artillery piece is an example of a multiple-kill weapon, 

while antitank weapon exemplifies the notion of a single-kill 

weapon.  It seems that whether a weapon be single-kill or 

multiple-kill should depend on the type of target (an artillery 

piece fired at infantrymen is clearly multiple-kill, but 

single-kill when fired at tanks); the mathematical structure we 

describe here is, in fact, sufficiently general to represent 

this phenomenon—but only with somewhat of a loss of clarity. 

(For further details, we refer the reader to comments in 

Chapter III.) 

According to our scheme of classification, there are thus 

four qualitative classes of weapons: 

• SS - Weapons with Square-law engagement initiation and 
Single kill per shot. 

• LS - Weapons with Linear-law engagement initiation and 
Single kill per shot. 

• SM - Weapons with Square-law engagement initiation and 
Multiple kills per shot. 



• LM - Weapons with Linear-law engagement initiation and 
Multiple kills per shot. 

The classical term "area fire" seems best represented by 

SM weapons; small arms point fire involves weapons of class 

LS.  The interested reader can devise his own interpretations 

for all four categories. 

For each class of weapon, certain input parameters will 

be required for the attrition process to be discussed below; 

our new process generalizes the processes presented in Refer- 

ence [5], from which the qualitative nature of the input param- 

eters is determined.  In particular, SS weapons behave as 

described in the Processes S3 and S3a of Reference [5], LS 

weapons as in Process L3, SM weapons as in Process Al (suit- 

ably generalized), and LM weapons as in the linear-law analogue 

of Process Al (which does not appear in Reference [5]).  For 

the statement and interpretations of these specialized attri- 

tion processes, the reader is referred to Reference [5]. 

Here are the assumptions and notations for the new, 

generalized Lanchester attrition process.  The combat is bi- 

lateral, involving two heterogeneous forces (Red and Blue); 

weapons are not distinguished except by the qualitative classes 

given above and, within each class, only by numerical values of 

parameters. 

Assumptions 

(1) The Blue force consists of M, types of weapons of the class 

SS, M? weapon types of class LS, M~ weapon types of the 

class SM, and M^ weapon types of the class LM.  Hence, Blue 

has altogether M = M + M + M + M^ types  of weapons.  The 

analogous numbers for the Red side are N^ N2, N , N^, and 

N = Nx + N2 + N3 + Njj. 

The notation used below is of the following form:  The 
letter "i" is used as a generic index for Blue weapon types, 



Types 1,...,M-. are the SS weapons; M +1,...,M +M are LS 

weapons; weapon types M +M +1,...,M +M +M are of class SM; 

and the remaining types belong to the class LM.  Certain 
parameters below are defined only for Blue weapons belong- 
ing only to one class (e.g., if that class is SM, the 
relevant index i ranges over 1,...,M~; when all Blue 

weapon types are considered, the index i ranges over 1,..., 
M.  For Red, a similar situation holds for the index j). 

M Blue forces are denoted by vectors x £ N , where N = 
{0,1,2,...}; x  is the number of type-i weapons (i=l,.7.,M) 

currently present.  (Red forces are analogously denoted by 

vectors y € N .) 

(2) Times between engagements initiated by a surviving Blue SS 
type-i weapon are independent and identically exponentially 
distributed with mean l/rß(i), i=l,...,M . . 

(3) When a Blue SS type-i weapon initiates an engagement, it 
attacks exactly one Red weapon (chosen from all  Red weapons 
currently surviving, according to a uniform distribution) 
Independently of the past history of the process. 

(4) The conditional probability that a Blue SS type-i weapon 
kills a Red type-j weapon, given an attack on that weapon, 
is PB(i,j) for i=l,...,M1,and j=l,...,N. 

(5) Assumptions (2), (3), and (4) hold for Red SS weapons with 
parameters rn(j), j=l,...,N and pR(j,i), j=l,...,N-,; i=l, 
...,M.     B 1     R 1 

(6) The time required for a particular surviving Blue LS type-i 
weapon to detect a particular surviving Red type-j weapon is 
exponentially distributed with mean l/dß(i,j) for i=l,...,M2 
and j=l,...,N.  A Blue LS weapon detects different Red weapons 
independently of one another and can engage an opposition 
weapon only after detecting it. 

(7) A Blue LS weapon engages every Red weapon it detects.  The 
conditional probability that a Blue LS type-i weapon kills 
a Red type-j weapon, given detection and attack, is kß(i,j) 
for i=l,...,M2; j=l,...,N. 

(8) Red LS weapons satisfy Assumptions (6) and (7) with mean 
detection times l/dR(j,i) and kill probabilities kR(j,i), 

defined for j=l,...,N2 and i=l,...,M. 



(9) Times between engagements initiated by a surviving Blue 
SM type-i weapon (i=l,...,M ) are independent and identi- 

cally exponentially distributed with mean l/r*(i). 

(10) Given that a Blue SM type-i weapon initiates an engagement 
against a currently surviving Red force y (recall the nota- 
tion introduced in Assumption (1), above) the probability 
that the surviving target force has the composition z is 
*B(i,y;z).  Symbolically, 

*>(i,y;z) = P{ surviving Red force is z | engagement 
initiated by Blue SM type-i weapon 
against Red force with composition y}. 

Here, y,z € N . 

(11) Red SM weapons obey Assumptions (9) and (10), with mean 
engagement rates r*(j), j=l,...,N_ and kill distributions 

R 3 M 
*R(j»x;w) defined for j=l,...,N ; x,w £ N . 

(12) The time required for a particular surviving Blue LM type- 
i weapon (1«1,. . . ,Mj.) to detect a particular surviving Red 

type-j weapon (j=l,...,N) is exponentially distributed with 
mean l/d*(i,j).  A Blue LM weapon detects different Red 

weapons independently of one another. 

(13) At the instant of each detection, a Blue LM weapon initiates 
an engagement. 

(14) Each engagement is independent of the previous history of 
the attrition process.  If a Blue LM type-i weapon engages 
a Red force of composition y after having detected a Red 
type-j weapon (j=l,...,N), the probability that z is the 
Red force surviving the engagement is denoted by uß(i,j,y;z), 

(15) Red weapons of the class (not type!) LM satisfy Assumptions 
(12), (13), and (14) with parameters d*(j,i) and uR(j,i,x;w) 

defined for J-l,.. ..»N^, 1-1,...,M, and x,w £  NM. 

(16) The detection, engagement, and kill processes of all weapons 
are mutually independent. 



Remarks on the Assumptions 

The spirit and meaning of the assumptions is that of Refer- 

ence [5].  In particular, the terminology used—though suggestive 

and frequently (we feel) the most plausible interpretation—need 

not be adhered to exactly.  Especially, the apparent dichotomy 

between square- and linear-law engagement initiations—on the 

basis of no detections or individual detection—can be inter- 

preted differently.  Further comments can be found in Reference 

[5, p.39]; Chapter I is also relevant in this context. 

The derivation of the kill distributions <*>B, v>R> uß, and 

uR is a problem that we have not yet considered in any depth.  In 

any application of our model to computerized simulations, this 

would be the problem most in need of attention.  Here we have 

indicated abstractly what functional dependences seem plausible 

and, hence, those that we feel can safely be ignored.  For 

example, the kill distributions do not depend on the structure 

of the force to which a shooting weapon belongs, though in 

principle they could.  Indeed, a reasonable way of describing 

such dependence would allow representation of the synergistic 

effects of weapons on the same side.  Similarly, the kill 

distributions y„ and uD for LM weapons indicate that the dis- 

tribution of weapons killed can depend on the particular (type 

of) weapon first detected; differing ammunition or tactics 

used against different detected weapons can thus be modeled. 

(Further comments appear in Chapter III, below, where we also 

give some examples.) 

To avoid unnecessary proliferation of notation, certain 

parameters are denoted by an asterisk for multiple-kill 

weapons and no asterisk for single-kill weapons. 

All "engagements" occur instantaneously, with ensuing 

total loss of contact.  This is admittedly an unrealistic 

feature of the model (though no other theater-level models 

10 



seem to have successfully addressed the difficulty either).  One 

way of including binary engagements with exponentially distri- 

buted lengths is discussed in Process L2 (of Reference [5]). 

Results 

We can now describe and characterize the stochastic 

attrition process engendered by Assumptions (1)-(16) above. 

Let E = N   consist of states denoted by a = (x,y); a is to 

be thought of as a possible pair of surviving forces at some 

instant—with x corresponding to the Blue force and y the 

Red.  As a measurable space, E is assumed to be endowed with 

the a-algebra of all its subsets.  The sample space for our 

attrition process is the family ft of functions from R+ to E, 

which are right-continuous and have limits from the left with 

respect to the discrete topology on E.  The coordinate (vector- 

valued) stochastic process ((B ,R ))  n (here B :Q •+  N and 

R :ft + N for each t) has the usual interpretation:  B is the 

surviving Blue force at time t; R. , the Red force at time t. 

We further define 

Ft = a((Bu,Ru); 0 < u < t) , 

which is the history of the attrition process until time t, 

and 

P = cr((Bu,Ru); u > O) , 

which is the entire history of the process.  For each a € E, 

we denote by Pa the probability law on (ft,F) of the attrition 

process governed by Assumptions (1)-(16), subject to the 

initial condition 

Pa{(B0,R0)=a} = 1 . 

Our notation and terminology concerning regular Markov 

processes are those of References [2], [3], and [4] (to all 

of which the interested reader is referred for background 

11 



material; also, Reference [5] contains a rather lengthy dis- 

cussion of the role of Markov processes in attrition models 

of Lanchester type.) 

Here is our main result: 

THEOREM.  Subject to Assumptions (1)-(16) listed above, 

the stochastic process 

(B,R) = (fl,F,Ft, (Bt,Rt),P
a) (1) 

is a regular Markov process with state space E.  The infinites- 

imal generator A of the process is of the following form: 

consider two states a = (x,y) and a' = (x',y') such that y' = 

y, x' = x - 1 for some i and x' = x for all k j-  i (the new 

state a' is reached from a by the destruction of exactly  one 

Blue type-i weapon).  Then 

x.  Nl 
A(a.o-) = M 

1  I rR(j)pR(j,i)yj 

k=l k 

N2 
+ x± I    dR(i,i)kR(i,l)^i+i 

N3 
+ \x   rR(J),VJ>X;X')yN1+V

J 

M     N4 
+ Jl Xk j-l jH(J'k),1R(3'1I»X!X')VW ' (2> 

For any other state a' = (x',y') with y' = y, x^ < x±  for all 

1, and J (x - x£) > 2 (this corresponds to the simultaneous 
1  1 

destruction of more than one Blue weapon and can be effected 

only by Red weapons of classes SM and LM), we have 

12 



N3 
A(a a') =  J^ r«(j)#R(J,x;x')yNi+N2+)J 

H     NH 

+ k=i *k j=i dR(J'k>uR(J*k,x;x')yN1+N2+V
J '  (3) 

Similarly, for a' = (x'.y') such that x"  = x, y' = y - 1 and 
y't  = yt  for.'* *  j, 

r rB(l)pB(i,J)x1 
y   Mi 

A(o.o') = -Y1- 

\   y. 
£=i * 

M2 

+ yj Ji dB(i,j)kB(i,j)xMi+1 

M3 
+ J^ r|(i)^B(i,y;y')xMi+M2+1 

N     MH 
+ til H  i-1 dB(1'MyB(l^'y;y')xM1+M2+M3+i • 

while for any other state a' = (x',y') such that x' = x,y' <_ y. 

for all j and £ (y. - y.') > 2, we have 
j  J   J 

M3 
A(a.a') = I    r»(i)*B(i,y;y')xM +M +1 

N     M4 

• + X   y* X   dB(1'1)wB(1»1'yjy')xM1+M.+M.+i . 

Moreover, for all a' ¥-  a and not of the forms above, we 

have 

A(a,a') = 0 

and, finally, 

A(o,a) = -  I    A(a,cO . n 
a Va 
13 



We omit the proof of the Theorem, which one constructs by 

using the results and by the methods of the appendix of 

Reference [5].  The expressions for the generator A have proba- 

bilistic interpretations and are written in what we feel is the 

most revealing form.  Consider, for example, the term A(a,a") 

of Equation (2).  Here the first summand (of four) on the right 

is the (instantaneous) rate at which Blue type-i weapons are 

being killed by Red SS weapons when the two forces have composi- 

tions x and y, respectively, and the second term is a similar 

rate arising from Red LS weapons.  For kills caused by single- 

shot weapons, "rate of kill" and "rate of kill one at a time" 

are the same notion.  This is not so for multiple-shot weapons. 

Hence, the third summand on the right-hand side of Equation (2) 

must be interpreted as the instantaneous rate at which Blue 

type-i weapons are being killed exactly  one  at  a   time  by Red SM 
weapons.  The interpretation of the fourth summand is then anal- 

ogous; note that the kill of a type-i weapon can, in principle, 

arise from the detection of any type of weapon.  Hence A(a,a') 

is—when the structure of the two forces is a = (x,y)—the 

instantaneous rate at which Blue type-i weapons are being 

destroyed precisely one at a time.  We emphasize that single 

kills can, in general, arise from multiple-shot weapons as 

indicated by the presence of the third and fourth summands 

in Equation (2). 

For the term of A given by Equation (3), only multiple- 

kill weapons need be considered, and interpretations are similar 

to those given above. 

We next list, for purposes of reference and completeness, 

some consequences of the Theorem. 

COROLLARY.  The jump function A of the process (B,R) is 

given by 

X(a) = - A(a,a) , (4a) 

14 



and the transition matrix P of the imbedded Markov chain is 

given by 

for a' ^ a, and 

P(a,0 = A^^} (4b) 

P(a,a) = 0 . (4c) 

[For the sake of simplicity, we do not write these expressions 
in full; they may be so written, from the Theorem, in a straight- 

forward manner.] 

COROLLARIES.  (a) For the Markov process (B,R), all states 

of the form (x,0) with x € NM or of the form (0,y) with y € NN 

are absorbing; all other states are stable and transient; 

(b) if a / (0,0) , then 

Pa{(Bt,Rt) = (0,0) for some t} = 0 ;        (5) 

(c) for any a, with Pa - probability 1 each component of 

the sample paths t •* B. and t + R, is nonincreasing.  (There 

is no provision for reinforcements; one indication of how this 

problem might be handled is given in the appendix of Reference 

[5, pp. 73-791). 

15 



Chapter III 

POTENTIAL APPLICATIONS 

We discuss in this chapter the potential applications of 

the attrition model derived in Chapter II as the assessment 

mechanism in a theater-level computerized combat simulation 

such as IDAGAM I (Reference [1]).  There are three principal 

problems to be considered:  implementation of the attrition model 

on a computer, derivation of the qualitative form of the kill dis- 

tributions v>B, v>Rj uß, and uR for multiple-shot weapons, and 
selection of the exact values of input parameters.  We shall 

discuss mostly the first two problems—with only brief consid- 

eration of the third problem and of other, minor problems. 

Within an Iterative computerized simulation like IDAGAM I, 

a most difficult problem is the proper handling of expected 

values of random variables.  At present, there is no model 

that justifiably does so in this context.  Consider the attri- 

tion model presented In Chapter II.  When the initial forces 

are (the deterministic point) (x,y), what is the expected 

attrition to a given type of weapon in a unit interval of time? 

Denote by (P+.)4.^n 
tne transition function of the survivor 

process (B,R); i.e., 

Pt(ct,a') = Pa{(Bt,Rt) = a'} 

for all a,a' € E.  The expected number of Blue type-i weapons 

surviving at the end of one time period is then 
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Xi 
:(x'y)[B,(i)] = I     k P(x'y){B1(i)=k} 1      k=l x 

xi 
=  I  k       S      P ((x,y),a') , 

k=l  a*»(x',y*):x£«k -1 

when initial conditions are (x,y).  Prom this expression, the 

expected attrition is easily computed.  Hence, proper expected 

attritions for deterministic initial conditions can be computed 

once the transition function is known—and, in fact, once the 
Markov matrix P  is known. 

Computation of the transition function from the generator 

A, however, is not a simple matter in practice.  The relevant 

expression is 

Uniformly good finite approximations may be possible, but 

they would entail enormous requirements for storage and computa- 

tion time for forces of theater- (or even sector-) level magni- 

tude.  The only approximation involving no such difficulties is 

the first-order approximation given by 

Xi 
E(x>yW(i)] -Ik     £     A((x,y);(x',y')) , (7) 

1     k=l  (x",y*):x*«k 

which is quite feasible for implementation.  Note that, in 

addition, we have 

P(x>y){Bn(i) = k} ~      ]£     A((x,y);(x'5y')) ,   (8) 
1 (x',y'):x^=k 

which gives the approximate probability distribution of the number 

of surviving Blue type-i weapons.  Joint distributions of number 

of surviving weapons may be similarly approximated. 

17 



IDAGAM I and similar models employ an iterative method of 

calculation for representing the evolution of time.  In such a 

scheme, the outputs of the attrition calculation for one time 

period constitute a portion of the inputs for the computation 

corresponding to the next time period.  In particular, if a deter- 

ministic equation of the form of Equation (7)—or even a correct 

evaluation of expected numbers of survivors—is used to compute 

numbers of survivors, then the inputs for the calculation of 

the second period are the expected number of survivors from the 

first; and, therefore, the result of that calculation will not, 

In general, be the expected number of survivors at the end of 

the second period.  What has happened, of course, is that the 

random number of survivors at the end of the first period was 

replaced by its expected value for use as an initial condition 

for the second period.  Within the current structure of IDAGAM, 

there is no way to circumvent this difficulty.  However, simu- 

lation experiments with simple homogeneous models indicate that 

the errors are rather small provided that the probability of one 

side or the other is annihilated be sufficiently small. 

Rather drastic alterations to IDAGAM might allow the program 

to carry from one period to the next the joint distribution of the 

numbers of surviving weapons, in which case a version of Equation 

(8) is the relevant approximation and no further approximations or 

simplifications are required. 

In a somewhat different setting, the generator A contains 

sufficient data to perform Monte Carlo simulations designed to 

improve the approximations in Equations (7) and (8) without 

performing the computations required to obtain Equation (6) or 

one of the approximating partial sums.  This possibility appears 

worthy of further investigation. 

The storage and bookkeeping problems associated with imple- 

mentation of Equation (7) as an attrition equation would be 

significant, though probably not overwhelming.  Most of the 

difficulties would arise from the large size of the generator 
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matrix A and the large number of kill distributions required to 

be stored for possible use in computations. 

We discuss next the problem of derivation of the form of 

the kill distributions for multiple-shot weapons.  First of all, 

each type of weapon must be placed in one of the four classes of 

weapons defined in Chapter II.  Then, for each multiple-kill 

weapon, the form of the kill distributions must be determined. 

This is evidently an arduous and lengthy task, and there is no 

clear conception as to how one should proceed.  We offer here 

only some plausible examples and interpretive comments: 

(1) We first note how single-shot weapons can be looked 
upon as special cases of multiple-shot weapons.  Con- 
sider a Blue SM type-i weapon and the associated kill 
distribution *>B(i,*;-).  If for each y the probability 

measure *>(i,y; • ) is of the form 

*B (i,y;y
(J)) = N 

l1  P^U.J) , 
I   y« 

yk 
(j) Jyk k / j 

lyri   k = i 

and 0 < p«(i>J) < 1> then the weapon becomes a SS 
—   D — 

weapon satisfying Assumptions (2)-(4), provided that 
*>o(i>y;y') " ° f°r y' neither of the form above nor 

equal to y. 

(2) More generally suppose that, whenever y' is such that 
yJl = yÄ, for a11 l  *  J ' one has 

y
l 

*Bd,y;y') ■ -^— *B(iJ ,yj *yp  » 

£=1 

where *£(!.,j ,y. ;y*) is the probability that, if the 

weapon in question engages a type-j target when there 
are y. Such targets present, then y' of them survive. 
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In this case, the target type is chosen by the uniform 
fire allocation of Assumption (3), hut possibly (though 
not necessarily) more than one of the class of target 
weapons can be destroyed.  This structure admits, 
therefore, the situation in which a weapon is single- 
kill against some kinds of targets but multiple-kill 
against others—answering the potential criticism 
raised in the second paragraph of Chapter II. 

(3) The binomial distributions of the Process Al of Refer- 
ence [5] could be used for the kill distributions to 
<p'  of the previous example. 
D 

(4) For weapons of Class LM, it might be reasonable to 
allow only weapons of the same type as that detected 
to be attacked and killed. 

Further work on deriving reasonably simple kill distribu- 

tions based on rigorous but plausible hypotheses is an aspect 

of this model in great need of further research. 

Gathering and interpretation of data could also prove 

troublesome.  Firing rates, for example, must be averaged to 

account for periods of time in which no interaction occurs, 

which may possibly preclude use of existing data.  This problem, 

however, is irrelevant to the internal consistency and plausi- 

bility of the attrition model.  Statistical verification of the 

hypotheses of the model would be useful, but is almost surely 

impossible; statistical estimation of parameter values, however, 

can probably be carried out. 
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